

ME 423: FLUIDS ENGINEERING

Dr. A.B.M. Toufique Hasan

Professor

Department of Mechanical Engineering,

Bangladesh University of Engineering and Technology (BUET), Dhaka

Lecture-20-21 (16/11/2024) Gas Pipeline Hydraulics

toufiquehasan.buet.ac.bd toufiquehasan@me.buet.ac.bd

13 companies under Petrobangla dealing in oil and gas exploration, production, transmission, distribution, conversion and promotion of LNG as well as the development and marketing of coal and granite.

* Petrobangla: Annual Report (2022)

Gas Production & Utilization in Bangladesh

NG (Natural Gas) RLNG (Regassified Liquefied Natural Gas)

Total 1,001.31 BCF (**B**illion **C**ubic **F**eet) in FY 2021-2022

* as of 2022 (Petrobangla: Annual Report (2022))

Gas Transmission Network in Bangladesh

Six marketing or distribution companies under Petrobangla are entrusted with the responsibility of marketing of natural gas (NG) to the customers ranging from large power and fertilizer plants to small households:

TGTDCL: Titas Gas Transmission & Distribution Company Ltd. (55%) JGTDSL: Jalalabad Gas Transmission & Distribution System Ltd. (15%) KGDCL: Karnaphuli Gas Distribution Company Ltd. (11%) BGDCL: Bakhrabad Gas Distribution Company Ltd. (10%) PGCL : Pashchimanchal Gas Company Ltd. (5%) SGCL: Sundarban Gas Company Ltd. (4%)

Total gas sales during FY 2021-22 was 1,001.3 BCF

* Petrobangla: Annual Report (2022)

Gas Transmission Network

CS: Compressor station RMS: Regulating & Metering Station FSRU: Floating Storage & Regasification Unit RLNG: Regassified LNG

* Petrobangla: Annual Report (2022)

Gas Transmission Network

মহেশখালী জিরোপয়েন্ট প্ল্যাটফরমে ৪২" সঞ্চালন পাইপলাইনের আন্ত:সংযোগ

Valve Station Under Chattrogram-Feni-Bakhrabad project

1500 million cubic feet capacity metering station constructing under Maheshkhali Zero point project

চউগ্রামের আনোয়ারায় নির্মিত ৬০০ এমএমএসসিএফডি সিটিএমএস

Compressor Station

3nos. compressor stations: (1) Ashuganj (CS-1), (2) Rashidpur (CS-2), and (3) Elenga (CS-3)

Ship to Ship (STS) LNG Transfer Operation

LNG Terminal at Moheshkhali Off-shore Area

Gas Production

No: 41.01.0	9/2604.Dec.2014	Р	etrobar	ngla			Date : 13-14	Nov, 20	24		From 8	3.00 to 8	.00
Production & Marketing Division 4 PM 3, Kawran Bazar, Dhaka-1215				l		Units:	Gas in MMCF Condensate/ LPG in Kg	⁻ D NGL/ MS/ HS	D in BBLD				
	Daily	Gas & Conden	sate Produc	tion and Di	stribution Re	eport			-				
I. Product	. Production												
	Gas	No.of Produc		Prod	uction	Pro.as a % of	Pro.as a % of		III. RPG	CL Produ	iction		
Company	Fields	ing Wells	Capacity	Gas	Condensate	T.Cap(Gas)	T. Prod(Gas)						
	Titas	26	542	363.3	330.0	9.5	12.8		Feed R	eceived		Production	on
	Habiganj	8	225	112.1	7.2	2.9	1.0		NGL	Cond.	LPG	MS	HSD
1. BGECL	Bakhrabad	7	43	29.0	34.5	0.8	0.8		0.0	0.0	0	0.0	0.0
	Narsingdi	2	30	22.7	28.0	0.6	0.8		0.0	0.0	v	0.0	0.0
	Meghna	1	11	4.2	4.3	0.1	0.1						
	Sub-Total	44	851	531.2	404.0	13.9	18.8						
	Sylhet	3	6	11.9	44.8	0.3	0.4			N-S & RA	<u>pipeline</u>		
	Kailashtila #1 (Silicagel)	0	0	0.0	0.0	0.0	0.0			Delivered f	rom N-S p	ipeline	
2. SGFL	Kallashtila #2 (MSTE)	2	30	40.3	321.3	1.1	1.4					1	
	Beanibazar	2	15	15.0	41.7 222.4	1.8	2.0			AB1 AB2	0.0		
	Sub-Lotal	14	118	137.0	630.1	3.6	4.8			BB	144.6		
	Salda	2	3	2.5	0.7	0.1	0.1			VS3	105.2		
	Fenchuganj	2	26	8.6	1.4	0.2	0.3			AM	554.8		
	Shahbazpur	4	50	72.4	13.2	1.9	2.6			BD	409.5		
	Semutung	2	3	0.9	0.0	0.0	0.0			Total	1214.0	1	
3. BAPEX	Sundalpur	1	5	3.2	0.0	0.1	0.1						
	Srikail	3	40	19.2	80.8	0.5	0.7						
	Begumgani	1	10	7.5	1.6	0.2	0.3						
	Rupgani	0	8	0.0	0.0	0.0	0.0						
	Sub-Total	15	145	114.3	97.7	3.0	4.0						
	Sub-Total (1+2+3)	73	1114	782.6	1131.8	20.4	27.7						
4. IOCs	,,												
	Jalalabad	7	270	146.1	813.8	3.8	5.2		Remarks:				1
CHEVRON	Maulavibazar	5	42	14.7	1.9	0.4	0.5						
	Bibiyana	26	1200	990.9	5636.4	25.9	35.0						
TULLOW	Bangora	5	103	37.1	110.0	1.0	1.3						
	Sub-Total	43	1615	1188.8	6562.1	31.0	42.0						
5. RPGCL (R	-LNG)		1100	857.0		22.4	30.3						
	Sub-Total	0	1100	857.0	0.0	22.4	30.3						
	Grand Total (1+2+3+4+5):	116	3829	2828.3	7693.9	73.9	100.0						J

Units to be used

In professional practices in gas pipeline hydraulics, the U.S. Customary System (USCS) units are most popular than Systeme International (SI) units.

Quantity	USCS unit	SI unit	
Mass	slug	kg	
Weight	lb	Ν	
Mass flow rate	lb/hr	Kg/hr	
Pressure	psi	Ра	
Temperature	°F	°C	
Volume	ft ³	m ³	
Volume of gas in gas production/distribution	 thousand ft³ (Mft³) million ft³ (MMft³) 	 thousand m³ (km³) million m³ (Mm³) 	
Volume rate production / distribution of gas	MMCFD (Million Cubic Feet per Day) MMSCFD (Million Standard Cubic Feet per Day)		

It must be noted that in the USCS units, the practice has been to use **M** to represent a thousand, and therefore **MM refers to a million**. This goes back to the Roman days of numerals, when M represented a thousand.

Units to be used

When referred to standard conditions (also called **base conditions**) of temperature and pressure (**60°F and 14.7 psia in USCS units**), the volume is stated as **standard volume** and, therefore, measured in **standard ft³ (SCF)** or **million standard ft³ (MMSCF)**.

Volume flow rate of gas is measured per unit time and can be expressed as ft³/min, ft³/h, ft³/day, SCFD, MMSCFD, etc. in USCS units. In SI units, gas flow rate is expressed in m³/h or Mm³/day.

Therefore,

500 MSCFD in USCS units refers to 500 thousand standard cubic feet per day (500,000 ft³/day), whereas 15 Mm³/day means 15 million cubic meters per day in SI units.

This distinction in the use of the letter **M to denote a thousand in USCS units** and **M for a million in SI units** must be clearly understood.

Text Book (s):

E. Shashi Menon, Gas Pipeline Hydraulics, 2005, ISBN: 978-0-8493-2785-8.

Standards:

ASME B31.8 (2010): ASME Code for Gas Transmission and Distribution Piping System ASME B31.1(2018): ASME Code for Pressure Piping

Gas density & Specific Weight

Density represents the amount of gas that can be packed in a given volume. Therefore, it is measured in terms of mass per unit volume. If 5 lb of a gas is contained in 100 ft³ of volume at some temperature and pressure, we say that the gas density is 5/100 = 0.05 lb/ft³.

Strictly speaking, in USCS units density must be expressed as slug/ft³ since mass is customarily referred to in slug.

 $\rho = \frac{m}{V}$

Thus,

 ρ = density of gas m = mass of gasV = volume of gas

Density is expressed in slug/ft3 or lb/ft3 in USCS units and kg/m3 in SI units.

A companion term called <u>specific weight</u> is also used when referring to the density of gas. Specific weight, represented by the symbol γ , is the weight of gas per unit volume measured in lb/ft³ in USCS units, and is, therefore, contrasted with density, which is measured in slug/ft³. In SI units, the specific weight is expressed in Newton per m³ (N/m³). Quite often, density is also referred to in lb/ft³ in USCS units.

L-4 T-2, Dept. of ME

USCS : U.S. Customary System

SI : Systeme International

(1.1)

Specific Gravity of Gas

Specific gravity of a gas, sometimes called *gravity*, is a measure of how heavy the gas is compared to air at a particular temperature. It might also be called *relative density*, expressed as the ratio of the gas density to the density of air. Because specific gravity is a ratio, it is a dimensionless quantity.

$$G = \frac{\rho_g}{\rho_{air}} \tag{1.2}$$

where

G = gas gravity, dimensionless $\rho_g = \text{density of gas}$ $\rho_{air} = \text{density of air}$

For example, natural gas has a specific gravity of 0.60 (air = 1.00) at 60°F. This means that the gas is 60% as heavy as air.

Specific Gravity of Gas

If we know the molecular weight of a particular gas, we can calculate its gravity by dividing the molecular weight by the molecular weight of air, as follows.

$$G = \frac{M_g}{M_{air}} = \frac{M_g}{28.9625}$$
(1.3)

or

$$G = \frac{M_g}{29} \tag{1.4}$$

Rounding off the molecular weight of air to 29 where

$$G$$
 = specific gravity of gas
 M_g = molecular weight of gas
 M_{air} = molecular weight of air = 28.9625

Specific Gravity of Gas

Since natural gas consists of a mixture of several gases (methane, ethane, etc.), the molecular weight M_g in Equation 1.4 is referred to as the apparent molecular weight of the gas mixture.

When the molecular weight and the percentage or mole fractions of the individual components of a natural gas mixture are known, we can calculate the molecular weight of the gas mixture by using a weighted average method. Thus, a natural gas mixture consisting of 90% methane, 8% ethane, and 2% propane will have a specific gravity of

$$G = \frac{(0.9 \times M1) + (0.08 \times M2) + (0.02 \times M3)}{29}$$

where M1, M2, and M3 are the molecular weights of methane, ethane, and propane, respectively, and 29 represents the molecular weight of air.

Multi component gas mixture

Table 1.1 Properties of Hydrocarbon Gases

			Vapor					l Gas		
			Pressure	Cı	ritical Constants	S	14.696 p	sia, 60°F	Specific Heat, Btu/lb/°F	
Gas	Formula	Molecular Weight	psia at 100°F	Pressure psia	Temperature °F	Volume ft³/lb	Spgr (air=1.00)	ft³/lb-gas	14.696 psia, 60°F Ideal Gas	
Methane	CH ₄ (C ₁)	16.0430	5000	666.0	-116.66	0.0988	0.5539	23.654	0.52676	
Ethane	$C_{2}H_{6}(C_{2})$	30.0700	800	707.0	90.07	0.0783	1.0382	12.620	0.40789	
Propane	C_3H_8 (C_3)	44.0970	188.65	617.0	205.93	0.0727	1.5226	8.6059	0.38847	
Isobutane	$C_4 H_{10} (C_4)$	58.1230	72.581	527.9	274.4	0.0714	2.0068	6.5291	0.38669	
n-butane	C₄H ₁₀	58.1230	51.706	548.8	305.52	0.0703	2.0068	6.5291	0.39500	
Iso-pentane	C_5H_{12}	72.1500	20.443	490.4	368.96	0.0684	2.4912	5.2596	0.38448	
n-pentane	C_5H_{12}	72.1500	15.575	488.1	385.7	0.0695	2.4912	5.2596	0.38831	
Neo-pentane	C_5H_{12}	72.1500	36.72	464.0	321.01	0.0673	2.4912	5.2596	0.39038	
n-hexane	C_6H_{14}	86.1770	4.9596	436.9	453.8	0.0688	2.9755	4.4035	0.38631	
2-methyl pentane	C_6H_{14}	86.1770	6.769	436.6	435.76	0.0682	2.9755	4.4035	0.38526	
3-methyl pentane	C ₆ H ₁₄	86.1770	6.103	452.5	448.2	0.0682	2.9755	4.4035	0.37902	
Neo hexane	C_6H_{14}	86.1770	9.859	446.7	419.92	0.0667	2.9755	4.4035	0.38231	
2,3-dimethylbutane	C ₆ H ₁₄	86.1770	7.406	454.0	440.08	0.0665	2.9755	4.4035	0.37762	
n-Heptane	$C_7 H_{16}$	100.2040	1.621	396.8	512.8	0.0682	3.4598	3.7872	0.38449	

• Natural gas, C1-C5+, water, inert gases

• NGL (Natural Gas Liquids), under pressure

- LPG (Liquefied Petroleum Gas), propan+butan, -42 C
- LNG (Liquefied Natural Gas), -162 C, 1 atm
- CNG (Compressed Natural Gas), 180-200 bar

· Oil, C6 and heavier fractions

[•] Condensate (liquid), C4-C7, transition gas-to-oil

Viscosity

The viscosity of a gas depends on its temperature and pressure. Unlike liquids, the viscosity of a gas increases with increase in temperature. Since viscosity represents resistance to flow, as the gas temperature increases, the quantity of gas flow through a pipeline will decrease; hence, more throughput is possible in a gas pipeline at lower temperatures. This is in sharp contrast to liquid flow, where the throughput increases with temperature due to decrease in viscosity and vice versa. It must be noted that, unlike liquids, pressure also affects the viscosity of a gas. Like temperature, the gas viscosity increases with pressure. Figure 1.1 shows the variation of viscosity with temperature for a gas. Table 1.2 lists the viscosities of common gases.

Viscosity

Figure 1.1 Variation of gas viscosity with temperature.

 $1 cP = 10^{-3} Pa.s$

I-4 T-2 Dept of MF	

Table 1.2 Viscosities of Common Gases

Gas	Viscosity (cP)
Methane	0.0107
Ethane	0.0089
Propane	0.0075
i-Butane	0.0071
n-Butane	0.0073
i-Pentane	0.0066
n-Pentane	0.0066
Hexane	0.0063
Heptane	0.0059
Octane	0.0050
Nonane	0.0048
Decane	0.0045
Ethylene	0.0098
Carbon Monoxide	0.0184
Carbon Dioxide	0.0147
Hydrogen Sulphide	0.0122
Air	0.0178
Nitrogen	0.0173
Helium	0.0193

where

μ

 μ_i

 V_i

It must be noted that all viscosities must be measured at the same temperature and pressure.

Viscosity

Since natural gas is a mixture of pure gases such as methane and ethane, the following formula is used to calculate the viscosity from the viscosities of component gases:

$$\mu = \frac{\Sigma \left(\mu_i y_i \sqrt{M_i}\right)}{\Sigma \left(y_i \sqrt{M_i}\right)}$$

= dynamic viscosity of gas mixture

 M_i = molecular weight of gas component *i*

= dynamic viscosity of gas component i

= mole fraction or percent of gas component i

(1.6)

According to kinetic theory of gases

Example 1

A natural gas mixture consists of four components C_1 , C_2 , C_3 , and nC_4 . Their mole fractions and viscosities at a particular temperature and pressure are indicated below, along with their molecular weights.

Component	Mole Fraction y	Viscosity, cP	Molecular Weight
C ₁	0.8200	0.0130	16.04
C_2	0.1000	0.0112	30.07
	0.0500	0.0098	44.10
nČ₄	0.0300	0.0091	58.12
Total	1.000		

Calculate the viscosity of the gas mixture.

Ans: 0.0123 cP

Ideal Gases

An **ideal gas** is defined as a fluid in which the volume of the gas molecules is negligible when compared to the volume occupied by the gas. Also, the attraction or repulsion between the individual gas molecules and the container is negligible.

Further, in an ideal gas, the molecules are considered to be perfectly elastic, and there is no internal energy loss resulting from collision between the molecules. Such ideal gases are said to obey several gas laws, such as **Boyle's law, Charles's law, and the ideal gas law** or the perfect gas equation.

If *M* represents the molecular weight of a gas and the mass of a certain quantity of gas is *m*, the number of moles, *n* is given by

$$n = \frac{m}{M} \tag{1.7}$$

For example the molecular weight of methane is 16.043. Therefore, 50 lb of methane will contain approximately 3 moles.

Ideal Gases

The ideal gas law, sometimes referred to as the perfect gas equation, simply states that the pressure, volume, and temperature of the gas are related to the number of moles by the following equation:

$$PV = nRT$$
 (USCS units) (1.8)

where

P = absolute pressure, pounds per square inch absolute (psia)

 $V = \text{gas volume, ft}^3$

n = number of lb moles as defined in Equation 1.7

- R = universal gas constant, psia ft³/lb mole °R
- T = absolute temperature of gas, °R (°F + 460)

The universal gas constant *R* has a value of 10.73 psia ft³/lb mole $^{\circ}$ R in USCS units. We can combine Equation 1.7 with Equation 1.8 and express the ideal gas equation as follows:

$$PV = \frac{mRT}{M} \tag{1.9}$$

All symbols are as defined previously.

It should be noted that the constant R is the same for all ideal gases and, hence, it is called the universal gas constant.

Ideal Gases

It has been found that the ideal gas equation is correct only at low pressures close to the atmospheric pressure. Since gas pipelines generally operate at pressures higher than atmospheric pressures, we must modify Equation 1.9 to take into account the effect of compressibility.

The effect of compressibility is accounted for by using a term called the **compressibility factor** or **gas deviation factor**, **Z**.

Real Gases

When dealing with real gases, we can apply the ideal gas equation and get reasonably accurate results only when the pressures are close to the atmospheric pressure. When pressures are higher, the ideal gas equation will not be accurate for most real gases. The error in calculations at high pressures using the ideal gas equation may be as high as 500% in some instances. This compares with errors of 2 to 3% at low pressures.

The critical temperature, T_c of a pure gas is defined as the temperature above which a gas cannot be compressed to form a liquid, regardless of the pressure. The critical pressure, P_c is defined as the minimum pressure that is required at the critical temperature to compress a gas into a liquid.

Real gases can be considered to follow a modified form of the ideal gas law. The modifying factor is included in the gas property known as the **compressibility factor**, *Z*. This is also called the **gas deviation factor**.

Real Gases

The **compressibility factor**, *Z* can be defined as the ratio of the gas volume at a given temperature and pressure to the volume the gas would occupy if it were an ideal gas at the same temperature and pressure.

Z is a dimensionless number less than 1.0 and it varies with temperature, pressure, and composition of the gas. Using the **compressibility factor Z**, the ideal gas equation is modified for real gas as follows:

where

- P = absolute pressure of gas, psia
- V = volume of gas, ft³
- Z = gas compressibility factor, dimensionless
- T = absolute temperature of gas, °R
- n = number of lb moles as defined in Equation 1.7
- R = universal gas constant, 10.73 psia ft³/lb mole °R

Real Gases

The theorem known as **corresponding states** says that the extent of deviation of a real gas from the ideal gas equation is the same for all real gases when the gases are at the same corresponding state.

The corresponding state can be represented by the two parameters called **reduced temperature**, T_r and **reduced pressure**, P_r .

The reduced temperature, T_r is the ratio of the temperature of the gas to its critical temperature, T_c . Similarly, the reduced pressure, P_r is the ratio of the gas pressure to its critical pressure, P_c as indicated in the following equations:

Compressibility factor chart (Standing-Katz chart)

For example, suppose the critical temperature and critical pressure of methane are 343°R and 666 psia, respectively; the reduced temperature and pressure of the gas at 80°F and 1000 psia pressure are as follows:

$$T_r = \frac{80 + 460}{343} = 1.57$$

and

$$P_r = \frac{1000}{666} = 1.50$$

Z = 0.88

L-4 T-2, Dept. of ME

When the gas consists of a mixture of different components, the critical temperature and critical pressure are called the *pseudo-critical temperature*, T_{pc} and *pseudo-critical pressure*, P_{pc} , respectively.

If the composition of the gas mixture is known, we can calculate these pseudo-critical values of the mixture, using the critical pressure and temperature values of the pure components that constitute the gas mixture. The *pseudo-reduced temperature*, T_{pr} and *pseudo-reduced pressure*, P_{pr} for a gas mixture can be calculated as:

$$T_{pr} = \frac{T}{T_{pc}} \tag{1.19}$$

$$P_{pr} = \frac{P}{P_{pc}} \tag{1.20}$$

where

- P = absolute pressure of gas mixture, psia
- T = absolute temperature of gas mixture, °R
- T_{pr} = pseudo-reduced temperature, dimensionless
- \vec{P}_{pr} = pseudo-reduced pressure, dimensionless
- T_{pc} = pseudo-critical temperature, °R
- \vec{P}_{pc} = pseudo-critical pressure, psia

A natural gas mixture that consists of components such as C_1 , C_2 , C_3 , and so forth is said to have an **apparent molecular weight**, M_a as defined by the equation:

$M_a = \Sigma y_i M_i$	(1.21)
where	
M_a = apparent molecular weight of gas mixture	
y_i = mole fraction of gas component <i>i</i>	
M_i = molecular weight of gas component <i>i</i>	

In a similar manner, from the given mole fractions of the gas components, we use Kay's rule to calculate the *average pseudo-critical properties* of the gas mixture.

$T_{pc} = \Sigma y_i T_c$	(1.22)
$P_{pc} = \Sigma y_i P_c$	(1.23)

where T_c and P_c are the critical temperature and pressure, respectively, of the pure component (C₁, C₂, etc.) and y_i refers to the mole fraction of the component. T_{pc} and P_{pc} are the average pseudo-critical temperature and pseudo-critical pressure, respectively, of the gas mixture.

Example 5

Calculate the apparent molecular weight of a natural gas mixture that has 85% methane, 9% ethane, 4% propane, and 2% normal butane as shown below:

Component	Percent	Molecular Weight
C ₁	85	16.01
C ₂	9	30.10
C ₃	4	44.10
n-C ₄	2	58.10
Total	100	

Ans. 19.24

Example 6

Calculate the pseudo-critical temperature and the pseudo-critical pressure of a natural gas mixture consisting of 83% methane, 12% ethane, and 5% propane.

The critical properties of C₁, C₂, and C₃ components are as follows:

Components	Critical Temperature, [°] R	Critical Pressure, psia
C ₁	343	666
C ₂	550	707
C ₃	666	617

Ans. 383.99°R and 668.47 psia

Example 7

If the temperature of the gas in the previous example is 70°F and the average gas pressure is 1200 psig, what are the pseudo-reduced temperature and pseudo-reduced pressure of this gas? Use 14.7 psia for base pressure.

Also determine the compressibility factor of gas mixture at this condition

$$T_{pr} = \frac{70 + 460}{383.99} = 1.38$$
$$P_{pr} = \frac{1200 + 14.7}{668.47} = 1.82$$

